

Corso di Laurea Magistrale a ciclo Unico in Medicina e Chirurgia

Insegnamento: Microbiologia

SSD Insegnamento: MEDS-03/A MEDS-03/A MVET/03B Nome del docente responsabile: Prof. Daniele Armenia

e-mail: daniele.armenia@unicamillus.org

Numero di CFU totali: 8

Modulo: Batteriologia

SSD Insegnamento: MEDS-03/A

Nome docente: Prof.ssa Claudia Vuotto (3 CFU) e-mail: claudia.vuotto@unicamillus.org

Nome docente: **Dott. Bouba Yagai (1 CFU)** e-mail: bouba.yagai@unicamillus.org

Modulo: Virologia

SSD Insegnamento: MEDS-03/A

Nome docente: Prof. Daniele Armenia (2 CFU) e-mail: daniele.armenia@unicamillus.org
Nome docente: Dott. Bouba Yagai (1 CFU) e-mail: bouba.yagai@unicamillus.org

Modulo: Parassitologia

SSD Insegnamento: MVET/03B

Nome docente:

e-mail:

Numero di CFU del singolo modulo: 1 CFU

PREREQUISITI

Pur non essendo prevista propedeuticità, sono necessari concetti di base di fisica, biochimica, biologia cellulare, genetica, istologia e anatomia.

OBIETTIVI FORMATIVI

Sono obiettivi irrinunciabili le conoscenze delle basi cellulari e molecolari della patogenicità microbica, delle interazioni microrganismo-microrganismo e microrganismo-ospite, delle cause e dei meccanismi di insorgenza delle principali malattie

ad eziologia batterica, virale, fungina e parassitaria e delle applicazioni di biotecnologie nella diagnosi, nella profilassi e nella chemioterapia antimicrobica. Tali obiettivi saranno raggiunti attraverso lezioni frontali, seminari ed attività didattica interattiva, destinate a facilitare l'apprendimento ed a migliorare la capacità di affrontare e risolvere i principali quesiti di

Microbiologia Medica.

CONOSCENZE E CAPACITA' DI COMPRENSIONE

Al termine dell'insegnamento integrato di Microbiologia, gli Studenti dovranno essere in grado di:

- 1. Dimostrare l'ubiquità e la diversità dei microrganismi nel corpo umano e nell'ambiente.
- 2. Illustrare le caratteristiche distintive dei vari tipi di microrganismi e le loro nicchie ecologiche.
- 3. Esplorare i meccanismi mediante i quali i microorganismi causano malattie (patogenicità microbica e fattori di virulenza).
- 4. Illustrare come il sistema immunitario combatte le infezioni mediante meccanismi specifici ed aspecifici.
- 5. Conoscere i principali patogeni umani (batteri, virus, funghi e parassiti) e le malattie che essi causano.
- 6. Riconoscere le modalità di trasmissione degli agenti infettivi in ambito ospedaliero, in comunità e nelle popolazioni, unitamente alle strategie che possono essere usate per controllare tale fenomeno.
- 7. Dimostrare di conoscere i principi della preparazione dei vaccini e l'uso corretto degli stessi nelle pratiche di immunizzazione.
- 8. Definire il ruolo della disinfezione e della sterilizzazione nel contest della cura del paziente e
- del rispetto dell'ambiente.¹
- 10. Illustrare i principi di base e l'azione dei principali antimicrobici (antibiotici, antivirali, antifungini ed antiparassitari).
- 11. Mostrare di essere consapevoli del ruolo del laboratorio di Microbiologia nella diagnosi e nel trattamento delle malattie infettive. In particolare, conoscere il processo diagnostico, inclusi la raccolta del campione clinico, il suo trasporto e le analisi di laboratorio che possono essere effettuate su di esso (esame microscopico diretto, tecniche di colorazione, semina ed isolamento, identificazione biochimica, antibiogramma, colture cellulari, PCR, genotipizzazione, NGS, metodiche sierologiche).

CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE

- -Applicare le conoscenze di microbiologia generale al contesto clinico, così da riuscire a comprendere i principi che sono alla base delle malattie infettive.
- -Mostrare di conoscere i principali test diagnostici usati per determinare l'infettività e la malattia in ambito ospedaliero ed in comunità.
- -Comprendere l'importanza della diagnosi differenziale nelle malattie microbiche basandosi sull'identificazione dei principali segni e sintomi e sull'interpretazione dei dati di laboratorio, producendo un ragionamento che tenga conto di tutti i fattori e conduca ad

una ipotesi diagnostica.

-Descrivere gli aspetti pratici della diagnostica strumentale in microbiologia: quali tecniche usare e quando usarle nella diagnostica e nella ricerca.

AUTONOMIA DI GIUDIZIO

- Riconoscere l'importanza di una conoscenza approfondita della microbiologia generale e
- medica coerente con un'adeguata educazione medica.
- Identificare il ruolo fondamentale di una corretta conoscenza teorica dei microrganismi e dei farmaci antimicrobici nella pratica clinica
- Riconoscere la rilevanza della ricerca microbiologica nelle politiche sociali di promozione

^{1 ,}

della salute pubblica e della difesa ambientale.

- Essere in grado di discutere criticamente i risultati ottenuti nel campo microbiologico in relazione ai dati disponibili nella letteratura internazionale attuale.

ABILITA' COMUNICATIVE

- -Presentare gli argomenti oralmente in modo organizzato e coerente. -Uso di un linguaggio scientifico adeguato coerente con l'argomento della discussione.
- Essere in grado di avere una discussione in classe con altri studenti sugli argomenti microbiologici affrontati nelle lezioni precedenti e / o argomenti di pubblico interesse su questioni microbiologiche, possibilmente utilizzando diversi supporti come la presentazione ppt e la consultazione di database scientifici e istituzionali (Pub Med , Ministero della Salute italiano, ECDC, WHO, ecc.)

CAPACITÀ DI APPRENDIMENTO

Al termine dell'insegnamento integrato, lo studente avrà acquisito capacità e metodi di apprendimento utili ad approfondire e ampliare le proprie conoscenze e competenze nell'ambito della medicina di laboratorio, anche attraverso la consultazione di letteratura scientifica, database, ²siti web specialistici.

PROGRAMMA D'ESAME:

BATTERIOLOGIA GENERALE:

Criteri di classificazione e tassonomia batterica. L'architettura della cellula batterica: il cromosoma batterico, il citoplasma, la membrana citoplasmatica. Gli involucri esterni dei batteri gram positivi e gram negativi. Capsula. I flagelli. Pili e fimbrie. Metabolismo e crescita batterica: la produzione delle spore batteriche. Genetica batterica: cromosoma e plasmidi. Il trasferimento di materiale genetico: trasformazione, trasduzione e coniugazione

batterica. L'azione patogena dei batteri: le tappe del processo infettivo. L'adesività batterica. La capacità invasiva. La produzione di tossine: meccanismi di azione delle esotossine e delle endotossine. L'immunità nelle infezioni batteriche: ruolo dell'immunità innata ed antigene specifica. Sieri immuni e vaccini. Principi generali per la diagnosi di malattie causate da batteri. Farmaci antibatterici: il meccanismo di azione. La resistenza ai farmaci antibatterici: meccanismi biologici di resistenza.

<u>BATTERIOLOGIA SPECIALE</u>: Stafilococchi. Streptococchi. Pneumococco ed Enterococchi. Bacilli e Clostridi. Corinebatteri e Listeria. Enterobacteriaceae. Pseudomonas. Vibrioni, Campylobacter e Helicobacter. Emofili, Bordetelle e Brucelle. Yersinie e Pasteurelle. Neisserie. Microrganismi anaerobi. Legionelle. Micobatteri. Spirochete. Micoplasmi. Rickettsie. Clamidie. Gardnerella

MICOLOGIA

Miceti : struttura e replicazione. Dimorfismo fungino. Meccanismi di patogenicità dei miceti. Infezioni da miceti opportunisti. Micosi superficiali, cutanee, subcutanee e sistemiche. Meccanismi

² 1

d'azione degli agenti anti-micotici.

<u>VIROLOGIA GENERALE</u>: natura, origine e morfologia dei virus, acidi nucleici virali, proteine e lipidi virali, moltiplicazione dei virus animali, interazione virus-cellula. Stato di persistenza e di latenza del genoma nella cellula ospite, colture cellulari, ciclo di moltiplicazione, isolamento dei virus animali, adattamento e virulenza, inattivazione dei virus, agenti fisici e chimici, antigeni di superficie cellulare codificati dai virus, risposta immune all'infezione virale. Interferoni. Chemioterapici e vaccini antivirali.

<u>VIROLOGIA SPECIALE</u>: Adenovirus, Herpesvirus, Poxvirus, Papovavirus, Hepadnavirus, Parvovirus, Picornavirus, Orthomyxovirus, Paramyxovirus, Rhabdovirus, Coronavirus, Flavivirus, Togavirus e altri virus trasmessi da insetti. Filovirus. Reovirus e Rotavirus. Virus epatitici (A, B, C, Delta, E). Retrovirus. Retrovirus dell'uomo. Virus oncogeni a RNA e DNA. Prioni.

PARASSITOLOGIA

<u>Parassitologia Generale</u>: Sistematica e Nomenclatura. Associazioni biologiche. Informazioni generali sui cicli vitali dei parassiti, sulla specificità parassitaria, sulle interazioni ospite-parassita e sull'azione patogena dei parassiti. Malattie parassitarie di interesse medico. La lotta alle malattie parassitarie..

<u>Parassitologia Speciale</u>: Protozoi: Amebe. Flagellati. Ciliati. Sporozoi. Metazoi: Trematodi. Cestodi. Nematodi. Vettori di parassitosi.

MODALITÀ DI INSEGNAMENTO

L'Insegnamento è strutturato in 80 ore di didattica frontale, suddivise in lezioni da 2/3 ore in base al calendario accademico. La didattica frontale prevede:

- lezioni introduttive che illustreranno nel dettaglio gli argomenti indicati nei programmi (tutti oggetto di verifica durante l'esame); gli approfondimenti trattati nelle ore di didattica frontale; la modalità dell'esame finale
- lezioni teoriche che copriranno gli argomenti di maggiore complessità che necessitano di una guida didattica per facilitarne la comprensione ;
- seminari integrativi che tratteranno argomenti di microbiologia di attuale interesse clinico che permetteranno³ di fornire spunti di studio in un'ottica moderna e all'avanguardia

MODALITÀ DI VERIFICA DELL'APPRENDIMENTO

L'esame necessita lo studio di tutti gli argomenti elencati nei suddetti programmi e consta di una prova orale per ogni modulo, in cui saranno valutate le capacità di apprendimento (learning skills), l'autonomia di giudizio (making judgements) e le abilità comunicative (communication skills) secondo quanto indicato nei descrittori di Dublino. L'esame risulterà superato solo se saranno superati tutti i moduli nella giornata di appello stabilita. La Commissione esaminatrice valuterà la capacità da parte dello Studente di applicare le conoscenze e si assicurerà che le competenze siano adeguate a sostenere e risolvere problemi di natura microbiologica.

La prova di esame sarà valutata secondo i seguenti criteri e costituirà una valutazione integrata dei 3 moduli di cui consta l'insegnamento:

Non idoneo: importanti carenze e/o inaccuratezza nella conoscenza e comprensione degli argomenti; limitate capacità di analisi e sintesi, frequenti generalizzazioni.

³ 1

- **18-20:** conoscenza e comprensione degli argomenti appena sufficiente con possibili imperfezioni; capacità di analisi, di sintesi e autonomia di giudizio sufficienti.
- **21-23:** Conoscenza e comprensione degli argomenti routinaria; capacità di analisi e sintesi corrette con argomentazione logica coerente.
- **24-26**: Discreta conoscenza e comprensione degli argomenti; buone capacità di analisi e sintesi con argomentazioni espresse in modo rigoroso.
- **27-29**: Conoscenza e comprensione degli argomenti completa; notevoli capacità di analisi, sintesi. Buona autonomia di giudizio.
- **30-30L**: Ottimo livello di conoscenza e comprensione degli argomenti. Notevoli capacità di analisi e di sintesi e di autonomia di giudizio. Argomentazioni espresse in modo originale

TESTI CONSIGLIATI

• Patrick R. Murray et al. Medical Microbiology, Elsevier / Masson Editors _8th Edi⁴tion.